Modality	Scope	Indications for use	Examples	Advantages	Disadvantages
Sanger sequencing	Detection of SNVs and small indels (<10 bp) within a DNA segment of <1 kb	 Confirmation of NGS findings Regions refractory to NGS, such as GC-rich, highly repetitive segments Patients whose phenotype is indicative of a disorder caused by mutations in one specific gene 	 Confirm frameshift COL4A3 variant detected by NGS Diagnostic testing for Fabry disease Detect CTNS mutation (nephropathic cystinosis) in a patient with corneal cystine crystals and Fanconi syndrome 	 High analytical accuracy Easier and faster sequence interpretation compared with multigene testing enables faster turnaround time No risk of secondary findings 	 Resolution <1 kb; cannot detect larger structural variants Increasingly time- and cost-inefficient with increasing gene length and/or number of genes tested
Chromosomal microarray	Genome- wide detection of CNVs ≥200–400 kb	Patients with phenotypes commonly resulting from genomic imbalances, such as multiple congenital anomalies	 Detect whole-gene deletion of <i>HNF1B</i> in a patient with renal hypodysplasia and autism Detect 22q11.2 deletion (DiGeorge syndrome) in a patient with renal agenesis and neonatal hypocalcaemia 	 Higher resolution enables detection of CNVs missed by karyotyping Genome-wide CNV detection increases diagnostic sensitivity 	 Cannot detect SNVs, indels, and small CNVs Limited ability to detect balanced chromosomal rearrangements, low-grade somatic mosaicism, and CNVs in certain regions (such as pseudogenes and repetitive elements)
Targeted NGS panels	Detection of SNVs and small indels (<1kb) within genes of interest for the clinically suspected phenotype	 Patients with phenotypes that are fairly specific for a particular disorder Disorders with low genetic and/or phenotypic heterogeneity 	 Testing AGXT, HOGA1, and GRHPR for primary hyperoxaluria in a patient with childhood-onset calcium oxalate urolithiasis Testing for COL4A3, COL4A4, and COL4A5 mutations in a patient with suspected Alport syndrome 	 Can be optimized to ensure sufficient coverage of variants in targeted regions Interrogation of genes that are related to the clinical indication facilitates interpretation and minimizes risk of secondary findings 	 Testing a limited number of genes decreases diagnostic sensitivity, especially for genetically and/or phenotypically heterogeneous disorders Challenges of panel design (gene selection and need for frequent updates) Minimal capacity for sequence reanalysis
Whole- exome sequencing	Detection of SNVs and small indels (<1 kb) within coding regions of the genome	 Patients with highly genetically heterogeneous or nonspecific phenotypes CKD of unknown aetiology Patients left undiagnosed by targeted NGS panels 	 NPHP-RC^{122,123} Diagnosis of congenital chloride diarrhoea in an unresolved case of presumed Bartter syndrome¹⁴⁸ Diagnosis of <i>LMX1B</i> glomerulopathy in familial ESRD of unknown origin¹⁶⁵ 	 Unbiased approach increases diagnostic sensitivity Interrogation of the coding regions that are enriched for known disease-causing mutations is a cost-effective approach to genome-wide testing Genome-wide scope enables sequence reanalysis and discovery of novel genes 	 Lower analytical sensitivity and specificity than whole-genome sequencing owing to limited coverage of certain regions and inability to accurately call certain types of variants (such as indels) Approach can lead to multiple candidate variants, increasing time required for interpretation and need for follow-up testing Burden of secondary findings in genes unrelated to the primary indication for testing
Whole- genome sequencing	Detection of SNVs and small indels (<1 kb) within coding and non-coding regions of the genome	 Patients with highly genetically heterogeneous phenotypes Patients with nonspecific phenotypes CKD of unknown aetiology Patients left undiagnosed by all other genetic testing modalities 	 Detection of causal intronic variants, for example, in a genetically unresolved case of Gitelman syndrome¹⁰⁶ Genetic diagnosis of ADPKD (owing to high sequence homology of <i>PKD1</i>)¹¹⁰ Detection of causal balanced translocations for congenital anomalies^{294,295} 	Superior diagnostic and analytical sensitivity to whole-exome sequencing owing to its ability to assess SNVs, indels, and CNVs in coding and non-coding regions and more complete per-base coverage	 Difficulty of interpreting non-coding variants Large amount of data generated results in substantial time and monetary costs, hindering return of results Burden of secondary findings in genes unrelated to the primary indication for testing Burden of long-term sequence data storage

ADPKD, autosomal dominant polycystic kidney disease; ADTKD-*MUC1*, autosomal dominant tubulointerstitial kidney disease due to mutations in *MUC1*; *AGXT*, alanine-glyoxylate aminotransferase; CKD, chronic kidney disease; CNV, copy number variant; COL4A, collagen type IV α -chain; *CTNS*, cytinosin, lysosomal cystine transporter; ESRD, end-stage renal disease; GC, guanine-cytosine; *GRHPR*, glyoxylate and hydroxypyruvate reductase; *HOGA1*, 4-hydroxy-2-oxoglutarate aldolase 1; *HNF1B*, HNF1 homeobox B; *LMX1B*, LIM homeobox transcription factor 1 β ; *MUC1*, mucin 1, cell surface associated; NGS, next-generation sequencing; NPHP-RC, nephronophthisis-related ciliopathy; *PKD1*, polycystin 1, transient receptor potential channel interacting; SNVs, single-nucleotide variants.